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Abstract

In computer graphics (especially in offline rendering), the current state of the art rendering tech-

niques utilize Monte Carlo integration to simulate light and calculate the value of each pixel in

order to generate a realistic-looking image.

Monte Carlo integration is a highly efficient method to estimate an integral that scales ex-

tremely well to a high number of dimensions, making it well suited for graphics, because gener-

ating images creates a high-dimensional integrand. The efficiency of these Monte Carlo integra-

tions depends on the sampling techniques used, and using amore efficient sampling technique

canmake aMonte Carlo simulation converge to the right answer quicker than usingmore naive

sampling techniques.

In this thesis, we present an efficient samplingmethod that demonstrates much higher per-

formance thanmanyother sampling techniques. This novel samplingmethod, basedonorthog-

onal arrays, offers guaranteed stratification in arbitraryprojections, leading tobetter theoretical

performance with integrands that have cross-correlated variance compared to sampling meth-

ods that do not offer these same guarantees.
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Chapter 1

Background

This section will explore background knowledge that pertains to the findings in this thesis. In

order to understand the significance of a sampling method, we must first explore the funda-

mentals of Monte Carlo integration and how different sampling strategies can affect the effec-

tiveness of Monte Carlo integration. The background sectionwill discuss different conventional

sampling techniques for Monte Carlo integration.

1.1 Monte Carlo Integration

Suppose we have a square dartboard that is one meter by one meter. We will call the length of

a side l . We know that the area of a square is simply l2, so the area of the dartboard is 1. Now

supposewe have a perfect circle inside of the square, andwe do not know the area of this circle.

We have an unlimited supply of darts, and we knowwhether each dart we throw falls inside the

circle, or outside of the circle (assuming that every dart hits the dartboard). If we want to find

the area of the circle, we can throw a bunch of random darts, record the number of darts that

hit the circle, and use the ratio of the number of darts that hit the circle to the total number of

darts thrown to find the area of the circle. For example, if about a quarter of our darts hit the

circle, then we can reasonably estimate that the size of our circle is 0.25 · 1 = 0.25.

The principle of stochastically estimating some arbitrary area or shape is the same princi-

ple that underlies Monte Carlo integration. Instead of a perfectly square dartboard, imagine an
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arbitrary integration domain. Now replace the circle with some arbitrary function. We can de-

fine the integral of the function as the area under the function. Now imagine throwing darts at

random, within some domain, except nowwe are trying to find the integral of a function rather

than the area of a circle.

In practice,MonteCarlo integration involves randomly selecting somepoint in the function’s

domain (Rd ) a certain number of times (N ) and averaging the calculated values.

∫ 1

0
f (x) ≈ 1

N

i=N∑
i=1

f (xi) where xi is a uniform random number (1.1)

It is important to note that it is not strictly necessary to use uniform random sampling for

Monte Carlo integration, but doing so makes the explanation of Monte Carlo simpler. An im-

portant property of Monte Carlo integration is that the estimation is guaranteed to converge

towards the correct answer asN approaches infinity. As a result,N is a variable that allows one

to choose between speed and accuracy.

lim
N→∞

1
N

i=N∑
i=1

f (xi) =
∫ b

a
f (x) (1.2)

1.1.1 Variance

Generally, we want to know how reliable a numerical method is. If we have some method of

approximatingavalue, it seemsuseful toknowwhether theanswerwegetwill varywildly across

different runs, or whether it tends to be fairly reliable. In most cases, we want more reliability,

something that becomes difficult to attain with the element of randomness. The measure of

how unreliable these approximations are is called variance, also denoted as σ 2.

σ 2 = E[X − µ2] (1.3)

where E denotes the expected value, µ is the average value ofmany runs, andX is simply a ran-

dom variable (Loeve, 1977). In this case,X is the result of some run of aMonte Carlo integration.
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If we get the same value every single time, then the difference between the result of a par-

ticular and the average of all the runs will be 0. Clearly, if the answers are more reliable, they

will vary less. Variance gives us away to quantify the reliability of randomvariables, or variables

that are the result of some sort of random process. It is important to note that variance is not

the same as accuracy - while having low variance is desirable, it does not necessarily imply that

the answers that we get are correct.

1.1.2 Convergence Rate

Even if we know that Monte Carlo integration will eventually converge to the correct answer,

it is useful to know how quickly it will converge. We call this property the convergence rate.

One thing that makes Monte Carlo integration so appealing for many use cases is that its con-

vergence rate is independent of the dimensionality of the integrand. Whether our integrand

is a 2D or a 90D integrand, the accuracy of the approximate integral will increase at the same

rate. While Monte Carlo with uncorrelated sampling has the advantage of having a convergence

rate that does not scale with dimensionality, there are methods that make it possible to yield

a steeper convergence rate. The convergence rate of Monte Carlo integration with a particular

sampling method can be calculated theoretically given knowledge about the sampling meth-

ods and integrand, which yields an asymptotic bound as with random sampling, or empirically,

by measuring the variance of a sampling method at various sample counts with a high number

of trials. As part of our research, we ascertained the theoretical convergence bounds for various

integrands and samplers, and verified them empirically.

1.2 Sampling

One heavily researched method to speed up Monte Carlo integration entails changing the sam-

pling strategy. Recall the example with the dartboard. What if instead of randomly throwing

darts at the board, we were to break the dartboard up into small grids? Doing so would ensure

thatwe cover all parts of the dartboard, alleviating theworry thatwemight havemissed an area

of the board.
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Many sampling strategiesweredesigned toaddress exactly this concern. Naive randomsam-

pling can fail by oversampling or undersampling critical parts of a function that will heavily in-

fluence the average (usually parts of a function that are really large or really small relative to

the average value of the function). In this section, we will explore notable sampling methods

that are used inMonte Carlo integration thatwe consideredwhen developing the new sampling

methods that will be introduced in this paper.

While this section will describe and explore many sampling methods, this is not necessarily

a comprehensive survey of all Monte Carlo sampling methods. These are important sampling

methods that we looked at as prior work as we worked on orthogonal array based sampling.

1.2.1 Discrepancy

Some common properties of sampling methods that are often used to describe a point set in-

clude something called the discrepancy of a point set. The discrepancy is a numericalmeasure

of how spaced out a point set is (Shirley, 1991). We do not want our points to be clumped to-

gether, and ensuring that all the points are well spaced out tends to be a property that is very

important for Monte Carlo sampling. In the literature, many points sets are referred to in a fa-

vorable manner by being described as a low-discrepancy sequence. There are several ways to

measure discrepancy, but in this thesis, we do not actually calculate the discrepancy values of

different point sets, so it is not important to know the mathematical definition so much as the

general implication of the term.

1.2.2 Padding

There is a common technique used specifically for high-dimensional integrands called padding

which combines different instances or shuffles of a low-dimensional sequence or point set to

create a higher dimensional point set. Suppose that we have some point set that has a favor-

able 2D distribution. We want to use this point set, which is well stratified in two dimensions,

on a four dimensional integrand. Suppose that we haveN samples, which consist of two-tuples
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Figure 1.1: Random sampler, 256 points

(the first element representing the first dimension, and the second element representing the

value in the second dimension). Now shuffle the indices of the point set, and retain that list of

numbers, calling it L, so that the first element of the original point set corresponds to the first

element in L. We can use these shuffled indices to add two more dimensions to the point set,

by selecting some index, i, from the original point set, and “padding” it with some other index l

which is imply the ith element ofL, yielding four dimensions. Thismethod is called uncorrelated

jittering (Cooku. a., 1984). There have beenothermethods proposed for padding, such asOwen

Scrambling (Owen, 1997) and random digit XOR scrambling (Kollig und Keller, 2002).

Padding provides an obvious advantage with respect to efficiency. Consider that we can

effectively “re-use” a point set to addmore dimensions to it without actually computing or stor-

ing more samples. If we only need a good distribution in a lower set of dimensions than the

dimensionality of the integrand, then padding is an easy way to add the dimensions we need.

1.2.3 Random Sampling

We have already discussed one method for Monte Carlo sampling: uniform random sampling.

There are several advantages tousing thismethod, namely that it is relatively easy to implement
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Figure 1.2: N-rooks sampler with strata lines, 9 points

correctly and simple to understand. We can see what such a point set looks like in Figure 1.1.

There is an intuitive pitfall that results from using naive random sampling. Consider a sce-

nariowhereweare trying to samplea step function inwhich f (x) = 0 forx ≤ 0.5and f (x) = 1 for

x > 0.5. In this case, if it so happens that every sample falls in the region where f (x) = 0, then

the estimated integral will be 0, which is clearly incorrect. Random sampling presents the dan-

ger of oversampling or undersampling regions of functions. This phenomenon becomes even

more dangerous with functions that vary more across the sampled domain.

1.2.4 N-Rooks Sampling

N-Rooks sampling is a method which yields a perfect 1D distribution of points (Shirley, 1991).

Imagine a finite 1D line. Now suppose that we want to place N points on the line, ensuring that

none of the points “overlap.” An easy method to do this is to divide the line into N sections,

or strata, and place a point within each stratum. We can also randomly jitter a point within a

strata to provide a “random” looking set of points whilemaintaining one-dimensional stratifica-

tion. Refer to Figure 1.2 to see what this distribution looks like in two dimensions.
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Figure 1.3: Jittered sampler, 256 points

N-Rooks sampling can be extended tomultiple dimensions by generating an N-Rooks point

set for each dimension and arbitrarily padding them together. Thismethod tends to be subopti-

mal but has the advantage of being trivial to implement and not very computationally intensive.

As we can see in Figure 1.2, the points are well-stratified in 1D projections, but are not stratified

in two dimensions. These properties lead to lower discrepancy and are not desirable for Monte

Carlo integration.

1.2.5 Jittered Sampling

In the jittered sampling approach, we divide the domain into different strata and place one sam-

ple randomly inside each stratum. We can see what this looks like by referring to Figure 1.3.

Stratifying our sample domain ensures that each stratum has a sample inside of it, which allevi-

ates some of the issues with uniform random sampling. For example, if we define even just two

strata in the case discussed for uniform random sampling, with the step function, we can avoid

the pitfall of only sampling the side where f (x) = 0.

This method has the advantage of being relatively simple to implement, and it can be ex-

tended in order to work inmultiple dimensions. We can jitter in 2D by creating a grid of squares
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Figure 1.4: The “canonical” multi-jittered arrangement, 256 points

within the domain, jittering in 3D is the same except we select cubes, etc. Jittering falls prey to

the “curse of dimensionality,” meaning it does not scale to higher dimensions efficiently, and

scaling to higher and higher dimensions is progressively more expensive. Jittered sampling

does not provide the most effective manner of sampling a function, as it has the unintended

effect of clumping points near the boundaries of strata, as seen in Figure 1.3.

1.2.6 Multi-Jittered Sampling

This samplingmethodwas introduced by Pete Shirley to address functions that exhibit variance

in two dimensions (Shirley, 1991). Shirley wanted to address the potential clumping of points

that tends to happen with jittered sampling. His solution was to combine the constraints of

jittered sampling with the constraints of N-rooks. This yields a perfect distribution in each 1D

projection as well as a nice distribution in 2D.

The technique to generate a multi-jittered point set is to start out by first dividing the do-

main (2D) into a set of strata and corresponding substrata, giving us effectively a two-tier set of

grids. Start by placing a point in each stratum, forming the “canonical” arrangement, which we

can see in Figure 1.4. Note that the canonical arrangement maintains the jittered and N-Rooks
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Figure 1.5: Randomizedmulti-jittered sampler, 256 points

constraints. Then shuffle the samples within each stratum in each dimension, while combining

the jittered and N-Rooks constraints, which we can see in Figure 1.5. The jittering constraint

yields stratification in a
√
N ×

√
N grid of strata, supposing that there are a total ofN samples in

a point set. The stratification constraint guarantees that there will be at least one point in every

part of this grid, ensuring that there is coverage over the entire domain. Within each large strata,

there are
√
N substrata, which is where the N-rooks constraint is applied. No point in one of the

smaller strata can overlap vertically or horizontally with a point in another stratum.

1.2.7 Correlated Multi-Jittered Sampling

IntroducedbyAndrewKensler, correlatedmulti-jittered (CMJ) samplingmodifies Shirley’smulti-

jittered sampling design to provide point sets that have a better shuffling arrangement and con-

sequently yield steeper convergence rates in empirical testing (Kensler, 2013).

The key idea behind CMJ is changing the shuffling step from multi-jittered sampling. In

Shirley’s method, the strata in each dimension shuffle points independently of shuffles in other

strata. Kensler’s modification entails using the same shuffle over each stratum in each dimen-

sion (Kensler, 2013). Qualitatively, thesepoints lookmoreaestheticallypleasinggiven thestronger
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Figure 1.6: Correlated multi-jittered sampler, 225 points

constraints that CMJ has for its points as we can see in Figure 1.6.

1.2.8 Quasi Monte Carlo Sampling

All of the sampling methods discussed so far rely on some element of randomness. Each pro-

duced point has some sort of input that stems from pseudo-randomnumber generation. There

aremethods of sampling that have been developed that do not rely on any sort of randomness.

We call such sampling methods “Quasi-Monte Carlo” (QMC) sampling.

QMC sampling methods tend to provide much higher performance in Monte Carlo integra-

tion than other samplingmethods and have become quite popular due to their superior perfor-

mance, low discrepancy, and high efficiency.

There are some common point sets and sequences in QMC that are commonly referred to

in the literature, such as (t, s) sequences and (t, m, s) nets. Such terms describe stratification

guarantees for samplers in a convenient and consistent manner. To explain these terms, we

must first define the elementary interval, which we describe as the elementary s-interval in
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base b. Suppose we have some interval with the following properties:

s∏
j=1

[
aj

bdj
,
aj + 1

bdj

]
(1.4)

Note that the invariants s ≥ 1 and b ≥ 2 must hold for this definition (Niederreiter, 1988).

We can see that the elementary interval provides a notation that describes some sort of even

partitioning within an arbitrary domain. This domain, consisting of evenly spaced partitions,

naturally falls within the scope of sampling. This talk of elementary intervals is very similar to

the idea of stratification, but intervals provide a far more formal and explicit bound.

Now let us define a (t,m, s)-net in base b. We can define one as a set of bm points in a do-

main [0, 1)s such that if we define some sequencexi , the cardinality of some elementary interval

P ∪ {x1, · · · , xbm } = bt for every elementary interval P in base b such that the hypervolume of

P = bt−m (Niederreiter, 1988). While the formal mathematical definition seems daunting, the

more general implication of the (t,m, s)-net constraints is that some set of points is distributed

in a uniformmanner which is more acutely described by the properties of the net, t,m, s.

A (t, s)-sequence is somewhatbasedon (t,m, s)-nets. A (t, s)-net is an infinite sequencewhich

requires that for everym > t and everyk ≥ 0, the setN is definedby Equation (1.5) (Niederreiter,

1988), where N must be a valid (t,m, s) net in base b.

N = {[xi] : kbm ≤ i < (k + 1)bn} (1.5)

1.2.9 Halton Sequence

The Halton sequence, named after its author, was introduced in 1960 as a means of determinis-

tically generating points that have low discrepancy, but at the same time, appear to look some-

what random (Halton, 1964) (refer to Figure 1.7). The Halton sequence has the additional advan-

tageof being aprogressive sequence -wedonot need knowledgeof the previous points in order

to generate the next point. This property allows for extremely high efficiency in generating sam-

ples.
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Figure 1.7: Halton sampler, 256 points

The Halton sequence can be constructed as follows: given some index in the point set, get

the representation of the number in binary. Take the number, invert it by reading the number

from right to left, and then place that number after a decimal point. Interpreting that number

in base 10 yields the point in the [0, 1)d domain.

As an example, let us look at the point at the fifth index of the Halton sequence. 5 = 101. 101

inverted is 101. Placing the number after a decimal point yields 0.101, whichwe interpret in base

10. It is easy togeneratepoints in thismanner, aswecan trivially convert an index intobinaryand

perform these steps to calculatewhere thepoint lies in spacewithhigh computational efficiency

and very low computational overhead.

1.2.10 Sobol Sequence

Perhapsoneof themostwidely used sequences inMonteCarlo rendering andotherMonteCarlo

applications, the Sobol sequence provides a high-efficiency, low-discrepancy point set that per-

forms extremely well in Monte Carlo integration. We can think of Sobol as the current gold

standard of Monte Carlo sampling. Not only does Sobol perform well, it is also a progressive
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Figure 1.8: Sobol sampler, 256 points

sequence, so we do not need to know the number of samples wewill use beforehand, for exam-

ple,which is a limitationpresent inmanyother samplingmethods. TheSobol sequenceexploits

the properties of numbers in their binary representations in order to progressively refine the in-

tervals that points are distributed across (Sobol, 1967) (refer to Figure 1.8).

The Sobol sequence has the property of being well-distributed in the unit domain and can

progressively partition the domain as more samples are generated to maintain a good distribu-

tion. The progressive nature of Sobol sequencingmakes it very attractive to use in any scenario

where we would want to have incremental sampling, such as computer graphics.

1.3 Monte Carlo in Computer Graphics

While we have extensively discussed the usage of Monte Carlo sampling and how it pertains to

integration in general, this does not explain the relevance of Monte Carlo sampling methods in

the context of computer graphics, and specifically pertaining to rendering.

We can generally think of the value of a pixel in a rendered image as the result of the integral

of light multiplied by the color value. In 1986, James Kajiya introduced the rendering equation
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(1.6), perhaps one of the most well-known fundamental equations in graphics (Kajiya, 1986).

Lo(x,ωo, λ, t) = Le(x,ωo, λ, t) +
∫
Ω
fr (x,ωi,ωo, λ, t)Li(x,ωi, λ, t)(ωi · n)ω′

i (1.6)

Integration isanecessaryoperationwhencalculating the radiancevalueof somepoint. Monte

Carlo integration offers an way to approximate this equation, which is extremely difficult to cal-

culate analytically. Not only that, the rendering equation tends to be extremely high dimen-

sional, and it becomes even more practical to use Monte Carlo integration due to the fact that

its convergence rate is independent of dimensionality. Generally in rendering, taking a sample

is equivalent to tracing a ray, which is a computationally expensive operation.

The practical benefit to speeding up Monte Carlo integration equates to time and money

saved when actually rendering a picture or a movie. It also equates to increased accuracy if we

want to use the same amount of time when rendering. In either case, optimizing Monte Carlo

integration carries obvious and significant benefits for rendering.

1.4 High-Dimensional Integration

Many of the samplers we presented focus on stratifying and addressing variance in two dimen-

sions. Rendering is extremely highdimensional andpotentially infinitely dimensional. The func-

tions that Monte Carlo integration attempts to approximate often exhibit variance in more than

two dimensions. Having sampling methods that explicitly address this high-dimensional vari-

ance would offer a significant improvement in efficiency.

One of the techniques explained earlier, padding, attempts to rectify this to some degree. It

generates high dimensional samples, but these samples are not stratified in high dimensions;

they are only well-stratified in pairs of dimensions (if we have a base sampler that is two dimen-

sional and padded together).

Another issue that arises is that samplers that are well-stratified in higher dimensions still
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exhibit poor stratification in certain projections. Consider a four-dimensional sampler, with the

dimensions {0, 1, 2, 3}. A sampler that is well-stratified in four dimensions and two dimensions

can still suffer if we take somearbitrary cross-dimensional projections, such as dimension 0 and

dimension 3.

The fact that arbitrary projections can exhibit poor stratification, or even the fact that many

samplers do not exhibit stratification in high dimensions, can cause serious issues with Monte

Carlo integration. If there is a mismatch between stratification and the dimensions in which a

function exhibits variance, the performance of Monte Carlo will degrade toO(N −1) (Singh und

Jarosz, 2017).
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Chapter 2

Orthogonal Arrays

In this chapterwewill explore the definition of an orthogonal array (OA), aswell as the statistical

significance of OAs. We will then go on to demonstrate practical construction techniques for

OAs.

2.1 Experiment Design

Orthogonal arrays are closely tied to statistical experiment design. Many of the terms used to

describe and define orthogonal arrays in the literature are conducive to a description of OAs in

the context of scientific experiments.

Suppose we want to conduct an experiment to figure out the optimal method to take care

of a plant that sits by our window. The only variables we can control are how much water we

give the plant and how much sunlight it receives. We would like to know the optimal levels of

water and sunlight to give our plant in order to keep it alive.

Let us define the variables here: levels of sunlight and levels of water. For simplicity, let us

say it is a binary choice andwe can either give water/sunlight or not. We can also call these vari-

ables factors, and state that there are two factors we are considering in this experiment. For

each of these factors, we define two levels, which is the binary choicewe referred to earlier. For

the factor water, the levels are: administering water and not administering water. For the fac-
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tor sunlight, the levels are: allowing the plant to see sunlight and not allowing the plant to see

sunlight.

Once we have our factors and levels figured out, we need to carry out a number of trials of

our experiment. We can call these trials runs, so we “run” our experiment a number of times

with different configurations of factors and levels.

Now suppose that wewant to figure out themost efficient way to test for the optimal combi-

nation of sunlight and water levels with respect to the survival of the plant. We could test every

combinationof factors and levels, whichwoulddefinitively tell us the effect of each factor on the

dependent variable (survival of the plant). This method also has a name: full factorial design.

With an experiment utilizing full factorial design, we get a robust route for experimentation at

the expense of time. It is not a very efficient method, since we have to try every combination of

factors and levels to get our results.

Orthogonal arrays attempt to provide a better way of tackling this issue by testing different

levels and factors in a more efficient manner. They do so by creating arrays that can be used

for experiment design, which aim to provide the most optimal method of testing the effect of

a factor on the outcome of an experiment without needing to resort to the full factorial design.

Often, it will provide a way for us to design an experiment without needing to try every combi-

nation of factors and levels. In fact, the full factorial design is referred to as a degenerate case

of an OA (Geyer, 2014).

2.2 Defining an Orthogonal Array

Now that we have an intuition for the effective purpose and some of the terminology used with

orthogonal arrays, we can go on to formally define orthogonal arrays. First, we need to define

a very important term in the OA literature: strength. The strength of an orthogonal array must

be less than or equal to the number of defined levels. If an orthogonal array has a strength of

t , it means that every t -tuple from the set of levels appears exactly the same number of times

24



across any t factors.

In the example with the plant experiment, we had defined two levels. Let us refer to them

as 0 and 1, so the set that defines the levels is as follows: {0, 1}. If we have an orthogonal array

with strength two, it means that wewill see the following tuples appear in the OAwith the same

frequency: {(0, 0), (0, 1), (1, 0), (1, 1)}. The number of times we see the tuples appear in the OA

is referred to as the index. For the purposes of our research, we are most interested in cases

where the index is 1, also referred to as the unit index.

Now that we have some an understanding of the defining terms of an orthogonal array, we

can provide a formal mathematical description. We denote an orthogonal array as follows:

OA(N ,d, s, t, λ) (2.1)

• N : number of runs

• d : number of factors

• s: number of levels

• t : strength

• λ: index

Note that the λ term is often omitted because it can be inferred from the other properties. If λ

is known, we can easily calculate N as N = λst . It is also important to note that the symbols

used to define these terms are not entirely consistent across the literature, but the properties

themselves are fairly consistent.

The orthogonal array for the plant experiment we described earlier would be described as

OA(4, 2, 2, 2, 1). We can also see what the OA actually looks like on Figure 2.1.
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Table 2.1: An example of anOA(4, 2, 2, 2, 1)

0 0

0 1

1 0

1 1

Table 2.2: An example of anOA(9, 4, 3, 2, 1)

0 0 0 0

0 1 1 1

0 2 2 2

1 0 1 2

1 1 2 0

1 2 0 1

2 0 2 1

2 1 0 2

2 2 1 0

Because the number of factors is so small, the resultant OA is a full factorial design, which

does not adequately show the power and advantage of using an OA. Let us change the exper-

iment slightly so we can understand why OAs are so useful. Suppose, in this case, everything

about the experiment remains the same, except now we have three levels: no sunlight/water,

some sunlight/water, and a lot of sunlight/water. We will represent this set of levels as {0, 1, 2},

so now s = 3. Let us add twomore factors as well: fertilizer and quality of soil, so now we have

a total of 4 factors (d = 4). We can see the resulting OA in Table 2.2.

We have four factors and three levels, yet our experiment design only requires nine runs. If we

considered a full factorial design, we would require 43 = 64 runs. Clearly, using this design

would be far more efficient. We can also better understand what a strength of two (t = 2) really
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means - take any two columns, and in those columns, we will see that every two-tuple from the

set {0, 1, 2} appears exactly once.

Orthogonal arrays offer an efficient way to design experiments, optimizing for the number

of runs required to determine the significance of somenumber of factors. This efficiency is been

recognizedandOAsareused for software testing (Pressman,2010), experimentdesign, andcryp-

tography.

2.3 Orthogonal Array Construction Techniques

A lot of the literature surrounding orthogonal arrays focuses more on existence proofs of OAs

with certain properties than practical (or even impractical) ways to construct OAs. As useful as

it is to know that these OAs exist and have these great properties, we may also want to know

how to actually produce one. We will explore some construction techniques which provide an

efficient algorithmicmethod to create anOA. Understanding these construction techniqueswill

also provide an understanding of the current limitations of orthogonal arrays with respect to

the constraints associated with these techniques.

2.3.1 The Bose Construction Technique

First, we will explore the Bose construction technique, which can produce the following orthog-

onal array

OA(p2,p + 1,p, 2, 1) (2.2)

where p is a prime number (Owen, 2013). Admittedly, this construction is very limited in the re-

gard that the orthogonal arraymust have aprime squarednumber of runs and canonly produce

OAs of strength two.

Letus suppose that theOA isdenotedasA, andAij is thenumberat the ith rowand jth column
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ofA. We define the construction of column 0 as

Ai0 =
⌊ (i − 1)

p

⌋
(2.3)

the construction of column 1 as

Ai1 = (i − 1) mod p (2.4)

and the construction of the other columns as

Aij = Ai1 + (j − 2)Ai2 where j > 1 (2.5)

noting that the construction of the other columns depends on the values from the first two

columns.

2.3.2 The Bush Construction Technique

The Bush construction technique is a generalization of the Bose construction technique that

relaxes the constraint on the strength (t ) and the constraint on the number of runs associated

with an OA. With the Bush construction, we can construct the following OA (Owen, 2013):

OA(pt ,p + 1,p, t, 1) (2.6)

While we still have the constraint of needing a prime “base”, we can now have an arbitrary

strength, t , such that 1 ≤ t < p (Owen, 2013). The number of runs, as a consequence, can

be a somewhat arbitrary power of a prime. It is still a big constraint, but less constricting than

the Bose construction.

The Bush construction relies on polynomials of the form (Owen, 2013):

φi(x) = ai,tx
t−1 + · · ·ai,1x + ai,0 (2.7)

We construct these polynomials for every i such that 0 ≤ i < pt , picking the coefficients so
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i =
∑t−1

l=0 ai,lp
l (Owen, 2013). This is equivalent to taking a number, x , interpreting it in base p,

and recording the coefficients, (including leading zeroes) up to degree t . Owen notes that we

do not actually need to take this particular polynomial, we simply needpt distinct polynomials,

and interpreting the index in basep presents an easyway to do so. There are otherways of creat-

ing distinct polynomials, which would allow for a base that is any power of a prime, rather than

a base that is just a prime. In order to do so, we must utilize Galois field arithmetic to generate

polynomials and perform the other operations (Owen, 2013).

Once we define the polynomials, we can construct the columns j = 0 · · ·p − 1 of the OA as

such:

Aij = φi−1(j − 1) mod p (2.8)

and construct the last column, p,

Aip = (i − 1) mod p (2.9)

which is a special case (Owen, 2013).
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Chapter 3

Orthogonal Arrays in Monte Carlo

Integration

Now that we understand how to construct orthogonal arrays, we can apply some transforma-

tions to them so they can be used effectively in Monte Carlo integration as a sampler. Veach, in

his thesis, brieflymentionedOAs for use in rendering (Veach, 1998). As far aswe know, OAs have

not been explored in Monte Carlo integration in the context of computer graphics.

We can normalize the points generated by an orthogonal array so that they fit within the

domain for Monte Carlo sampling. We can also translate some of the terms used to describe

OAs so that they make sense in the context of Monte Carlo integration. The number of runs in

an orthogonal array is analogous to the total number of points in a point set, the factors are

equivalent to the dimensionality of the point set, and the levels are analogous to the number of

large strata used when sampling.

3.1 Owen’s Transformations

Owen demonstrates a simple transformation that can be applied to points of an orthogonal ar-

ray to make them suitable for Monte Carlo integration. This mostly entails randomizing them,

normalizing them, and jittering themwithin strata.
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Figure 3.1: An OA with no randomization, highlighting the “planar flaw” (Jarosz u. a., 2019).

Figure 3.2: A randomized orthogonal array (Jarosz u. a., 2019).
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It is crucial to randomize the orthogonal arrays, otherwise the points align along several

planes, something that is referred to as the “planar flaw” (Owen, 2013). Refer to Figure 3.1 to

see what the canonical arrangement of the Bose construction looks like, and compare with Fig-

ure 3.2 to see what the OA looks like once randomized.

Owen defines the randomized, jittered, and normalized arrangement of an OA as such:

Xij =
πj(Aij) +Uij

b
(3.1)

where 1 ≤ i ≤ n and 1 ≤ j ≤ d (Owen, 2013). π1 · · · πd are defined as random permutations of

the indices of the OA. In essence, this equation shuffles the points of an orthogonal array, jitters

the points within their strata, and then normalizes them so that they fall within the [0, 1) unit

domain (per each dimension).

There are still improvements that can be made. For example, none of the shuffling in this

transformation of the OA is correlated, and we do not meet the Latin hypercube/N-rooks con-

straint, which would improve the sampler’s performance in Monte Carlo integration.

3.2 Practical Construction Algorithms

In this section, we aim to provide practical construction techniques for generating point sets

that use the transformation provided by Owen. With these algorithms, we aim to be efficient,

which entails low memory and computational requirements. These implementations are in-

place, which means that any index and dimension of a sampler can be generated without re-

quiring knowledge of other points, which lends itself to low memory overhead. Of course, this

introduces some added complexity - how do we know where to place a point so that it meets

strict stratification requirements and maintain the N-rooks guarantee if we don’t know where

the other points are positioned? In this section, we will explain how we can achieve that while

presenting examples of code that we used to generate orthogonal array based point sets.
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1 /*!
2 * \brief Permute a number
3 *
4 * \param i The number to permute/the index of the permutation vector
5 * \param l The desired size of the permutation vector
6 * \param p The seed of the shuffle
7 */
8 unsigned permute(unsigned i, unsigned l, unsigned p) {
9 unsigned w = l - 1;
10 w |= w >> 1;
11 w |= w >> 2;
12 w |= w >> 4;
13 w |= w >> 8;
14 w |= w >> 16;
15
16 do {
17 i ^= p;
18 i *= 0xe170893d;
19 i ^= p >> 16;
20 i ^= (i & w) >> 4;
21 i ^= p >> 8;
22 i *= 0x0929eb3f;
23 i ^= p >> 23;
24 i ^= (i & w) >> 1;
25 i *= 1 | p >> 27;
26 i *= 0x6935fa69;
27 i ^= (i & w) >> 11;
28 i *= 0x74dcb303;
29 i ^= (i & w) >> 2;
30 i *= 0x9e501cc3;
31 i ^= (i & w) >> 2;
32 i *= 0xc860a3df;
33 i &= w;
34 i ^= i >> 5;
35 } while (i >= l);
36 return (i + p) % l;
37 }

Listing 3.1: The hashedpermutation function as presentedbyKensler, which allows for in-place
permutation of an arbitrarily sized array with nomemory overhead.

3.2.1 Background Listings

In this section, we will introduce some code snippets that will be used throughout this paper.

These are useful snippets of code that we have either constructed or derived from other works.

Thepermute function produces an in-place or hashed permutation (Listing 3.1). It is equiv-

alent to creating a list of l elements, and shuffling each element around, and retrieving the ith

element in that list. This function is taken from Kensler’s technical report (Kensler, 2013).
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1 float randfloat(unsigned i, unsigned p) {
2 i ^= p;
3 i ^= i >> 17;
4 i ^= i >> 10; i *= 0xb36534e5;
5 i ^= i >> 12;
6 i ^= i >> 21; i *= 0x93fc4795;
7 i ^= 0xdf6e307f;
8 i ^= i >> 17; i *= 1 | p >> 18;
9 return i * (1.0f / 4294967808.0f);
10 }

Listing 3.2: An efficient function to generate a pseudo-random number.

Libraries

For the purpose of this research, I wrote additional libraries to helpwith the verification of point

sets and construction methods. One library, called oars, is an orthogonal array construction

and verification library written in the Rust language. It contains functions to generate orthogo-

nal arrays using the Bose and Bush construction techniques, it also has verificationmethods to

check whether a given point set is valid with respect to the OA parameters that it should have.

Additionally, oars has extensive benchmarking tools to check the performance of each con-

structor.

Another more general purpose library, mcsampler, is a Monte Carlo sampling library writ-

ten in Rust. It contains a general interface for sampling and implements a number of sampling

techniques, not just orthogonal array based sampling. The mcsampler library also contains

utilities for checking the validity of point sets, whether points are properly stratified, and have

the N-rooks guarantee (see Listing 3.3).

3.2.2 (Correlated) Multi-Jittering in 2D Projections

We have already discussed the Bose construction techniques. We propose a slight modifica-

tion of the technique in order to allow for correlatedmulti-jittering, aswas described by Kensler

(2013), but in a manner that extends these properties to a higher-dimensional point set.

Whenconstructing the first twocolumnsof thepoint set, theBoseconstruction, asdescribed
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1 pub fn verify<T: OAInteger>(oa: &OA<T>) -> bool {
2 if oa.points.ndim() != 2 {
3 return false;
4 }
5
6 if oa.points.shape()[1] != oa.factors.to_usize().unwrap() {
7 return false;
8 }
9
10 let col_combos =
11 (0..oa.factors.to_u64().unwrap()).combinations(oa.strength.to_usize()
12 .unwrap());
13
14 // this iterator gives us every possible combination of columns
15 for selection in col_combos {
16 // tuple count holds the count for how many times each possible tuple is
17 // seen
18 let mut tuple_count: HashMap<u64, u64> = HashMap::new();
19
20 // loop through the points and count up how many times we encounter
21 // the tuple
22 for i in 0..oa.points.shape()[0] {
23 let mut tuple_index = 0;
24
25 for (power, column) in selection.iter().enumerate() {
26 tuple_index += (oa.points[[i, column.to_usize().unwrap()]] *
27 pow(oa.levels, power))
28 .to_u64()
29 .unwrap();
30 }
31 // set count to 1 if it doesn't exist, otherwise update the count
32 *tuple_count.entry(tuple_index).or_insert(0) += 1;
33 }
34
35 // now verify that the hashmap has every possible combination, `index`
36 // times
37 for i in 0..oa
38 .levels
39 .to_u64()
40 .unwrap()
41 .pow(oa.strength.to_u32().unwrap())
42 {
43 // if the entry is not present in the array, set the count to 0
44 if *tuple_count.entry(i).or_insert(0) != oa.index.to_u64()
45 .unwrap() {
46 return false;
47 }
48 }
49 }
50 true
51 }

Listing 3.3: A method that verifies if a point set is a valid orthogonal array given a point set and
the parameters for the orthogonal array, written in Rust.
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by Equation (2.3) and Equation (2.4), essentially takes the index and breaks it down into its base

p representation. The implication of using a base representation means that every index will

yield unique strata. This is the key to being able to select strata in-place while ensuring that ev-

ery point lands in different strata. We know that any two numbers a and b, such that a , b, will

yield representations in any base such that a andb have different representations. In short, this

means that different indices yield different combinations of strata.

This is a good start, because we have well-stratified points with respect to the coarse strata

in the domain (there are p strata in each dimension), but we also want to maintain the N-rooks

constraint, as well as multi-jittered, and correlated multi-jittered offsets. Within each of the p

strata, there are p additional substrata in each dimension. The key to achieving the proper off-

sets is to select the correct substrata once a coarse stratum has been selected. Our strategy for

selecting offsets entails using the stratum from another dimension to inform what the stratum

ought to be for the current dimension.

In order to implement simple jittering, we can choose a substratumat randombypermuting

the index through all of the available substrata. This ensures that we pick a unique substratum

for each point to meet the N-rooks constraint, but does not provide any correlation. If we want

multi-jittered (MJ) sampling, we can be a bit more clever when choosing the offset function.

We can permute through the substrata based on the coarse strata selected by some other di-

mension. For the first two dimensions, we base the substrata of the x dimension on the coarse

stratum of the y dimension. For higher dimensions, we simply need a consistent method of se-

lecting a stratum from another dimension.

We introduce a further complication in order to implement correlated-multi jittered (CMJ)

sampling with respect to selecting the other dimension. We only enforce the CMJ constraint

for “primary” pairs of dimensions, such as (0, 1), (2, 3), etc. This means that all of the cross-

dimensional projections of the point set do not get the CMJ stratification. Instead, we perform

the MJ offset for the cross-dimensional projections. For the CMJ offset, we select the same sub-

stratabasedoffof the coarse strata for every dimension, so that the shuffleswithinCMJ-enabled
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1 float boseOA(int i, int j, int s, int p, Offset ot) {
2 int Aij, Aik;
3 i = permute(i % (s*s), N, p * 0x51633e2d);
4 int Ai0 = i % s;
5 int Ai1 = i / s;
6 if (j == 0) {
7 Aij = Ai0;
8 Aik = Ai1;
9 } else if (j == 1) {
10 Aij = Ai1;
11 Aik = Ai0;
12 } else {
13 int k = (j % 2) ? j-1 : j+1;
14 Aij = (Ai0 + (j-1) * Ai1) % s;
15 Aik = (Ai0 + (k-1) * Ai1) % s;
16 }
17 int stratum = permute(Aij, s, p);
18 int subStratum = offset(Aij, Aik, s, p * 0x68bc21eb, ot);
19 float jitter = randfloat(i, p * 0x02e5be93);
20 return (stratum + (subStratum + jitter) / s) / s;
21 }
22
23 // Compute substrata offsets
24 int offset(int sx, int sy, int s, int p, OffsetType ot) {
25 if (ot == J) return permute(0, s, (sy * s + sx + 1) * p);
26 if (ot == MJ) return permute(sy, s, (sx + 1) * p);
27 return permute(sy, s, p); // Defaults to CMJ
28 }

Listing 3.4: An implementation of the Bose construction techniquewith various types of offsets.
The parameter i represents the index of the point set, j is the “other” dimension to use to cal-
culate offsets within strata, s is the number of coarse strata in each dimension, p is the effective
seed to use for the shuffling and randomization, andot is the offset type to applywhen shuffling
within coarse strata.

dimensions are identical, as implemented in the original 2D variant of CMJ (Kensler, 2013).

Listing 3.4 demonstrates an implementation of the Bose in-place sampler with selectable

jittered, multi-jittered, and correlated-multi jittered offsets.

3.2.3 (Multi-)Jittering in t-D Projections

TheBush construction allows us to select an arbitrary strength (t ), which equates to an arbitrary

stratification guarantee. Where Bosewas restricted to strength 2, and thus can only be stratified

in 2D projections, the Bush construction allows us to expand beyond two dimensions and strat-

ify in any t -dimensional projection.

The basic strategy is similar towhatwedid for the Bose construction. We first select a coarse
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1 float bushOA(int i, int j, int s, int t, int p, Offset ot) {
2 int N = pow(s, t);
3 i = permute(i, N, p * 0x51633e2d);
4 auto iDigits = toBaseS(i, s, t);
5 int stm = N / s; // s^(t-1)
6 int k = (j % 2) ? j - 1 : j + 1;
7 int phi = evalPoly(iDigits, j);
8 int stratum = permute(phi % s, s, p);
9 int subStratum = offset(i, s, stm, p * 0x68bc21eb, ot);
10 float jitter = randfloat(i, p * 0x02e5be93);
11 return (stratum + (subStratum + jitter) / stm) / s;
12 }
13
14 // Compute the digits of decimal value `i` expressed in base `b`
15 vector<int> toBaseS(int i, int b, int t) {
16 vector<int> digits(t);
17 for (int ii = 0; ii < t; i /= b, ++ii)
18 digits[ii] = i % b;
19 return digits;
20 }
21
22 // Evaluate polynomial with coefficients a at location arg
23 int evalPoly(const vector<int> & a, int arg) {
24 int ans = 0;
25 for (int l = a.size()-1; l >= 0; --l)
26 ans = (ans * arg) + a[l]; // Horner's rule
27 return ans;
28 }
29
30 // Compute substrata offsets
31 int offset(int i, int s, int numSS, int p, OffsetType ot) {
32 if (ot == J) return permute(0, numSS, (i + 1) * p);
33 return permute((i / s) % numSS, numSS, p); // Defaults to MJ
34 }

Listing 3.5: An implementationof theBush in-place construction techniquewith various offsets.
The parameters are identical as described in Listing 3.4.

stratum based on the index of the sample re-interpreted in basep. We then select a substratum

by assigning a new unique index from the original index. In this case, we elected to make the

new index i/p mod pt−1. Another transformation can be used, as long as every sample that falls

into the same strata receives a unique index so we can ensure they all fall in different substrata.

The standard jittering approach remains the same as before - select a random substratum for

each sample.

In Listing 3.5, we have the in-place implementation of Bush with jittered and multi-jittered

offsets. The functions evalPoly and toBaseS correspond to Equation (2.7), which we estab-

lished is equivalent to transforming the index to base p, and reinterpreting it in base 10.
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1 float cmjdND(int i, int s, int t, int p) {
2 int N = pow(s, t);
3 i = permute(i, N, p * 0x51633e2d);
4 auto iDigits = toBaseS(i, s, t);
5 int stm1 = N / s; // s^(t-1)
6 int stratum = permute(iDigits[j], s, p);
7 auto pDigits = allButJ(iDigits, j);
8 int subStratum = evalPoly(pDigits, s);
9 subStratum = permute(sstrata, stm1, p * 0x68bc21eb);
10 float jitter = randfloat(i, p * 0x02e5be93);
11 return (stratum + (subStratum + jitter) / stm1) / s;
12 }
13
14 // Copy all but the j-th element of vector in
15 vector<int> allButJ(const vector<int> & in, int omit) {
16 vector<int> out(in.size()-1);
17 copy(in.begin(), in.begin() + omit, out.begin());
18 copy(in.begin() + omit + 1, in.end(), out.begin() + omit);
19 return out;
20 }

Listing 3.6: An implementation of the CMJND construction technique. i represents the index of
thepointwithin thepoint set, s is thenumberof coarse strata in eachdimension, t is the strength
of the resulting point set (and also the cross-stratification guarantee), and p is the seed for the
hashed pRNGmethods used by themethod (such as the hashed permutation and randomnum-
ber generator functions).

3.2.4 CMJND

We constructed a generalization of Kensler’s CMJ technique that relaxes the constraint on the

base that is present for the Bush andBose construction techniques and allows an arbitrary base

that is not necessarily a prime number. The downside to this method is that it constructs a full

factorial design, an orthogonal arraywhere t = d , so the stratification is equal to the dimension-

ality of the points (while still holding the N-rooks constraint).

We achieve this design by converting the index to base p, which essentially gives us the se-

lection of each stratum. We can permute these factors in order to yield a random shuffling of

the points. The trick here is to use the coefficient for the current dimension (use the first coeffi-

cient to calculate a point in the first dimension, and so on) to calculate the strata, and use the

rest of the coefficients to calculate the substrata. We have already established that this strategy

will create a unique selection of strata because the uniqueness of the indices holds regardless

of which base they are represented in.
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3.2.5 PBRT Implementation

In order to test the performance of these sampling techniques on rendered scenes, we opted to

use PBRT, an educational renderer that is commonly used in research. In order to do this, we

had to integrate the sampling code we had into PBRT’s sampling interface.

PBRT provides two types of sampling interfaces: the per-pixel sampler and the global sam-

pler. The per-pixel sampler provides a convenient interface for generating sample sets for each

pixel. Every single pixel in the image will receive its own set of sampling points, all of which are

unawareof the samplingpoints in other pixels. Sometimes, this is not sufficient, and a sampling

point set should bewell distributed over the entire image. For this, PBRT provides a global sam-

pler. In the global sampler, one set of sampling points are used over a whole image, so samples

that land in different pixels are “aware” of each other.

We implemented the CMJND, Bush, and Bose sampling strategies in PBRTwith the per-pixel

sampler due to performance and ease of implementation. The global sampler in PBRT requires

an instant reverse lookup of a pixel location to the index of a point. For example, if we have a

pixel at location (x,y), given our set of samples, we need to knowwhich index i results in a sam-

ple point thatwill land in the pixel (x,y). The only feasibleway to implement this is to knowhow

to create a mapping of pixel locations to indices in the sampling point set. Because we shuffle

points using Kensler’s permutation function, it would seem that we could compute the reverse

of the hash and get a mapping that yields the pixel locations and indices in an efficient manner.

Unfortunately, because the function relies on a destructivemodulo operator, themethod is not

reversible. In this case, the only remaining option is to calculate all of the points and store a

mapping of the points and pixel locations in memory, which is too inefficient for rendering.
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Chapter 4

Results

Wehaveexplored the theorybehindOAsamplinganddifferentefficient construction techniques

for different variations of OA sampling. It is also important to test for and establish both the the-

oretical bounds and empirical performance of the samplers. In this section we will present the

theoretical bounds of OA sampling aswell as real world performance and results fromempirical

analyses.

4.1 Theoretical Bounds

Functions can exhibit variation in a number of dimensions, and we ideally want our sampler to

be well-stratified in the dimensions that a function exhibits such variance. For example, if we

have an additive one-dimensional function, any sampler that meets the N-rooks constraint will

perform similarly, even identically when looking at the asymptotic convergence rates.

We can take this idea and get finer bounds on convergence rates if we know the dimensions

in which the integrand varies and in which our sampler is well-stratified. Analytic variance anal-

yses have been performed in several works which show the theoretical bounds on Monte Carlo

integration in particular scenarios (Jarosz u. a., 2019).

We know that naive random sampling always nets an asymptotic bound ofO(N −1), regard-

lessof the function, its varianceproperties, or thedimensionality. Samplers thatarewell-stratified
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Table4.1: Theconvergence rate improvement (b inO(N −1−b)) as a functionof thedimensionality
and smoothness of the integrand for various samplers. The 1- and t -additive integrands are d-
dimensional, where t < d . Best case for each integrand is bold. (Jarosz u. a., 2019)

Sampler Convergence rate improvement b

Integrand: d-dim. t -dim. t -additive 1-additive

Discontinuity: C1 C0 C1 C0 C1 C0 C1 C0

Random 0 0 0 0 0 0 0 0
d-stratified 2/d 1/d 2/d 1/d 2/d 1/d 2/d 1/d

Padded t -stratified 0 0 2/t 1/t 0 0 0 0
Padded t -stratified+LH 0 0 2/t 1/t 0 0 2 1

OA strength-t 0 0 2/t 1/t 2/t 1/t 2/t 1/d
OA strength-t+LH 0 0 2/t 1/t 2/t 1/t 2 1

in d dimensions with d dimensional integrands that are C1 discontinuous have a convergence

rate ofO(N −1−2/d) (Jarosz u. a., 2019; Owen, 2013). The same scenario with a C0 discontinuous

integrand yields an asymptotic convergence rate of O(N −1−1/d) (Jarosz u. a., 2019). Figure 4.1

presents a selection of scenarios and the best case convergence bounds, taken from a preprint

of an EGSR paper (Jarosz u. a., 2019).

We can see that orthogonal array sampling presents some distinct advantages. One big ad-

vantage is that orthogonal array sampling can handle variation in any d-projection. If we know

a function has variation in d dimensions, we do not need to do any clever mapping to make

sure the variation lines up with the dimensions of the sampler that are well-stratified, because

every d = t dimensional projection is well-stratified with OA sampling. This provides an even

bigger advantage for functions that have cross-dimensional variation. Suppose we have some

function that exhibits variance inmultiple arbitraryd dimensional projections. OA sampling can

handle that as well, since we already have well stratified-projections.

The downside is that the variation needs tomatch the strength of the OA. Suppose we have

an OA with t = 3, but the integrand is four-dimensional. This will lead to the OA having a per-

formance ofO(N −1), which is the same as random sampling, which is not ideal. Sobol sampling

does not have this issue, as itmaintains good stratification inmultiple dimensions. OA sampling
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doesnot performoptimallywhen thedimensionality of the integrand is less than the strengthof

the OA. While the performance does not degrade asmuch as when the dimensionality is higher,

it still doesnotofferasdramaticof an improvementaswhen thedimensionalityand thestrength

match up. OA sampling uniquely poised to perform well when functions exhibit variance in all

combinations of dimensions, for example:

f (x,y, z) = f (x,y) + f (y, z) + f (x, z) (4.1)

While this is a unique case, there is no other sampler better equipped to handle variation in this

fashion.

4.2 Empirical Results with Analytic Integrands

Wemodified theEmpirical ErrorAnalysis (EEA) (Subru. a., 2016) tool to supportmulti-dimensional

integrands and added a number of samplers to it in order to test the variance of various func-

tions and samplers. This tool allowed us to see if our samplers matched the theoretical expec-

tations that we laid out, and the results seem tomatch up.

Prior work has mostly focused on variation in two dimensions, and the variance analyses

presented in this paper offer results that focus on variance in multiple dimensions. We crafted

several functions that used one-dimensional functions as the basis, which were then combined

to formhigherdimensional functions in away that allowedus to control thedimensionality (and

the dimensionality of the variance) as well as the discontinuity of the resulting functions. Our

one-dimensional basis functions consisted of a Gaussian,

д∞(r ) = exp(−r 2/(2σ 2)) (4.2)

a C1 discontinuity,

д1(r ) = 1 − linearStep(r , rstart, rend) (4.3)
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Figure 4.1: A visual representation of the д0 function

and a C0 discontinuity,

д0(r ) = 1 − binaryStep(r , rend) (4.4)

all of which were clipped so that the center of the functions began in the origin of the domain.

The clipping made the function asymmetrical, which is a desired property for these tests. They

all share the parameters rend = 3/π , rstart = rend − 0.2, and σ = 1/3.

We built several integrands, both additive and multiplicative, by constructing variance in

various projections. The way we achieved this was by constructing d dimensional functions

thatwere additive ormultiplicative in t dimensions, so an additive functionwith t = 2 andd = 3

would resemble Equation (4.1).

We can define a more generalized formula to describe the functions that we constructed in

a dimensionally generic way. The additive and multiplicative variants are defined in Equations
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Figure 4.2: A visual representation of the д1 function

Figure 4.3: A visual representation of the д∞ function
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(4.5) and (4.6), respectively. Equation (4.1) would be considered a function of the type f D3,2+.

f Dd,t+(p1, · · · ,pd) =
d∑

i1=1

· · ·
d∑

it=it−1+1

f Dt (pi1, · · · ,pit ) (4.5)

f Dd,t×(p1, · · · ,pd) =
d∏

it=1

· · ·
d∏

it=it−1+1

f Dt (pi1, · · · ,pit ) (4.6)

We tested our samplers on these integrals. In addition to the samplers that have already

been discussed, we tested several variations of padded samplers, such as CMJ padded, and the

padded (0, 2)-sequence sampler that is present in PBRT (Pharr u. a., 2016).

In Figure 4.4, we present empirical convergence graphs for an extensive set of variance sam-

plerswith various functions. The legendof these graphs contain a sampler name, alongwith the

convergence rate of the sampler, such that the number provided, x , corresponds to the slope

O(N x ).

We can see that themost significant performance improvements occurwhen thedimension-

ality of the integrand, d , matches the strength of the OA, t . The 1-additive integrand provides a

scenario where the OA samplers can achieve a steeper convergence rate than even the QMC

samplers, a significant result in Monte Carlo integration. Unfortunately, when t , d for non-

additive integrands, the performance of the OA samplers degrades to roughly the performance

that we expect of naive random sampling. Sobol and Halton, which offer higher dimensional

stratification than OA sampling, performwell in these circumstances.
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4.3 Empirical Results with Rendered Scenes

On top of performing empirical analyses with analytic integrands, we tested our samplers in

real-world rendering scenarios. We implemented the Bose and Bush samplers in PBRT as per-

pixel samplers. In PBRT, samplers can either be implemented as “global” samplers, where the

samples are distributed across the whole image, or as “per-pixel” samplers, where each pixel

gets its own set of samples, which are unaware of the samples in other pixels. Global sampling

tends to accentuate structural artifacts, such as the ones that are common with the Sobol sam-

pler.

To measure the performance of our samplers, we computed a ground truth render for each

scene, using the PBRT-implemented uniform random sampler with four orders of magnitude

more samples than the rest of the samplers. This gave us a reasonably confident estimate of

what image the samplers should be converging to. We computed the MSE on each image to see

howmuch error each sampler had at comparable sample counts.

We created three scenes. The first, dubbedCORNELLBOX, is the classic Cornell box scene and

uses anti-aliasing, soft shadows, and depth of field with a direct lighting integrator to create a

7D integrand (Pharr u. a., 2016). The second, dubbed BLUESPHERES, is a scene that utilizes mo-

tion blur, depth of field, antialiasing, and inter-reflections with the path tracing integrator to

create a 9D integrand. The third and most complex scene, dubbed BARCELONA, is a scene of an

apartment with a swimming pool featuring global illumination with the path tracing integrator

to yield a 43D integrand.

We found that the benefits of using OA sampling had diminishing returns as the scenes got

more complex. Visually, it is difficult to see the difference between samplers as more complex

scenes introduce more elements and noise. We computed the MSE for each scene with each

sampler and cropped specific zoom-ins for regions where we felt that there was a notable dif-

ference in performance between the samplers. These comparisons and MSE figures are in Fig-

ure 4.5. Generally, we found our OA sampling methods to be the highest performing non-QMC
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methods, except in the CORNELLBOX scene, whereOA sampling outperformsQMC sampling. No-

tice the artifacts from the Sobol sampler in the soft shadows of the CORNELLBOX scene. These

artifacts are distracting, very noticeable, and likely more pronounced because the Sobol sam-

pler in PBRT is a global sampler, as mentioned earlier. It is likely that some of this artifacting

could be rectified by using a per-pixel Sobol sampler.

We also conducted variance analyses using different sample sizes on a single pixel for the

CORNELLBOX and BLUESPHERES scenes. The pixels were from the regions where the zoom-ins

and crops were placed, highlighting areas in each scene where we thought the samplers had

significant differences. In Figure 4.6, we can see that Bose outperforms all of the other samplers

in CORNELLBOX, and in the BLUESPHERES scene, we get the expected results - the Bose sampler

outperforms all of the non-QMC samplers.
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Figure 4.5: The BLUESPHERES, CORNELLBOX, and BARCELONA scenes feature different combina-
tions of pixel antialiasing, DoF, motion blur, and several bounces of indirect illumination for
combined integrands of 9D, 7D, and 43D respectively. The relative MSE numbers for the entire
image (top) and each inset (bottom) show that our OA-based sampling technique is able to out-
perform2Dpadded samplers (first 4 columns), and is close to the quality ofmulti-dimensionally
stratified global samplers like Halton and Sobol (Jarosz u. a., 2019).
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Figure 4.6: Variance behavior andbest-fit slope of various samplers for a pixel in the yellow inset
in BLUESPHERES and the blue inset of CORNELLBOX in 4.5. Our samplers always perform better
than traditional padding approaches and even outperform the global Halton and Sobol sam-
plers in CORNELLBOX (Jarosz u. a., 2019).
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Chapter 5

Conclusion

The introduction of orthogonal arrays along with practical construction techniques gives us a

way to efficiently generate a sampling method for Monte Carlo integration that performs well

with high-dimensional integrands. It addresses a problem that has been relatively unexplored

in computer graphics. The usage of orthogonal arrays is relatively new to the field, and it seems

that OA sampling could offer many solutions for Monte Carlo rendering. Though OA sampling

has shown promising results, it is not without its flaws, and there are many things that can be

done to improve on the existing research.

5.1 Limitations

The Bose and Bush construction have a rather daunting constraint: they require a prime base

(Owen, 2013; Bose und Bush, 1952; Bush, 1952). With larger and larger sample sizes, finding a

prime base can be extremely inconvenient. At lower sample sizes, it can cause an issue because

thedimensionality of thepoint set is limitedby theprimebase, so for extremely complex scenes,

for example, wemay not be able to use small sample sizes in our point sets.

We have also already discussed the fact that OAs are optimized for integrands with a dimen-

sionality d that match the strength of an OA t . One advantage that the Sobol and Halton sam-

plers have is that they arewell-stratified inmanydimensions anddonot require this kind of fine-

tuning for particular integrands. Sobol andHalton also have the advantage of being progressive
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sequences (Christensen u. a., 2018; Halton, 1964; Sobol, 1967). As it standswith the construction

techniques we have introduced, we need to know the number of samples required in advance

and cannot progressively distribute samples in the manner achieved by Halton and Sobol.

5.2 Future and RelatedWork

There is some active research in the areas that we have pointed out as good areas of improve-

ment for Monte Carlo integration. On the point of the dimensionality mismatch between OA

strength and integrand variance, there is a promising area of research called Strong Orthogo-

nal Arrays (SOAs) that could solve this issue by providing better stratification guarantees for

multiple levels of projections (He und Tang, 2012). Ideally, we could generate an SOAwith t = 4,

for example, and that would yield good stratification for 1, 2, 3, 4-d projections. He and Tang

have already proven that it is possible to generate an SOA from an OA with a larger dimension-

ality (He und Tang, 2012).

The stratification guarantees from SOAs are much denser than the guarantees of OAs. Con-

sider a strength t . Now consider every combination of numbers that adds to t . We will say this

set of numbers is calledE. We can take this set anduse these numbers as exponents for the base

of the OA (which denotes the number of coarse strata). Suppose that there are |E | elements in

E, so the stratification guarantees for an SOA of strength t are sE0 × sE1 × · · · × sE |E | . As a more

practical example, consider t = 3. We have the combinations: 0 + 0 + 3, 0 + 1 + 2, 1 + 1 + 1, etc.

Those sets correspond to the stratification guarantees: 1 × 1 × s3, 1 × s × s2, s × s × s, etc (He

und Tang, 2012). This is not a comprehensive list, as the other combinations of these numbers

shuffled around at different dimensions are included in the list of stratification guarantees that

the SOA provides. As we can see, these stratification guarantees are quite dense and seem sim-

ilar to the concept of elementary intervals (Niederreiter, 1988; Sobol, 1967). The oars library

discussed earlier also contains utilities for verifying whether a point set is a valid SOA.

There currently seem tobenoefficient or easily implementablemethods to construct strong

orthogonal arrays, and existing methods require one to generate a larger orthogonal array and
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“collapse” it into an SOA (He und Tang, 2012), or use generalized orthogonal arrays (Lawrence,

1996). A working, efficient, SOA construction method could yield a lot of gains for Monte Carlo

integration performance, providing the advantages we get from OAs for high dimensional func-

tionsbut relaxingconstraintswhilepossibly increasing thebenefits thatweget fromhigh-dimensional

stratification.
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